一、光伏电池片的简介

光伏电池片是光伏发电的核心部件,其技术路线和工艺水平直接影响光伏组件的发电效率和使用寿命。光伏电池片位于光伏产业链中游,是通过将单/多晶硅片加工处理得到的可以将太阳的光能转化为电能的半导体薄片,光伏电池是光伏发电的最基本单元。电池片经过串联、并联,达到一定的额定输出功率和电压后,即形成光伏组件。 电池片的转换效率是其受光照时的最大输出功率和入射光功率的比值,是直接影响光伏组件乃至整个光伏发电系统发电效率的核心因素。转换效率更高的电池片有着更高的输出功率,用其封装形成的光伏组件的整体功率也会更高。

二、光伏电池片分类

电池片类型:晶硅电池、薄膜电池、单晶电池、多晶电池、PERC电池、Topcon电池、HJT(异质结)电池、XBC电池、钙钛矿电池等。

电池片主流型号:M10单晶PERC、G12单晶PERC、M10单晶topcon、G12单晶topcon 等。当前电池技术迭代迅速,N型电池占据主流,PERC电池已逐渐被淘汰,预计在2024年中旬Topcon电池占比能达到70%。

三、光伏电池片详细介绍:

P型电池:在p型半导体材料上扩散硼元素,形成n /p型结构的太阳电池即为P型硅片,以这种材料制作的光伏电池称为P型电池;P型电池是目前主流电池工艺,具有制作工艺简单,成本较低优点,缺点最高效率有其固有瓶颈。

N型电池:在N型半导体材料上注入磷元素,形成p /n型结构的太阳电池即为N型硅片;N型电池电池效率可以做得更⾼,但是⼯艺更加复杂,目前越来越多的企业生产N型电池,有望成为未来的主流技术。

异质结(HJT/HIT)电池:全称为本征薄膜异质结电池,是一种高效新型晶硅太阳能电池结构,利用晶体硅基板和非晶硅薄膜制成的混合型太阳能电池,即在P型氢化非晶硅和N型氢化非晶硅与N型硅衬底之间增加一层非掺杂(本征)氢化非晶硅薄膜。异质结电池它由于其独特的双面对称结构及非晶硅层优秀的钝化效果,具备着转换效率高、双面率高、几乎无光致衰减、温度特性良好、可使用薄硅片、可叠加钙钛矿等优势,同时其制造工艺流程较短,近年来发展很快,在未来普及程度较高。

TOPCon电池:是一种基于选择性载流子原理的隧穿氧化层钝化接触的太阳能电池。Topcon电池结构为N型硅衬底电池,在电池背面制备一层超薄氧化硅,然后再沉积一层掺杂硅薄层,二者共同形成了钝化接触结构,有效降低表面复合和金属接触复合。具有高转换效率、低内部短路、高温度稳定性和弱光性能优异等优点的新型太阳能电池。在未来,随着光伏技术的不断进步,Topcon电池有望在更广泛的领域得到应用。

铟镓硒(CIGS)薄膜太阳能电池:由四种元素铜、铟、镓、硒作为功能层,同时在柔性衬底沉积其他功能层制备而成,只要几微米薄就可以和传统的厚重的硅电池板一样发电。CIGS电池具有性能稳定、抗辐射能力强,光电转换效率高,,接近于目前市场主流产品晶体硅太阳电池转换效率,成本却是其1/3。正是因为其性能优异被国际上称为下一代的廉价太阳电池,无论是在地面阳光发电还是在空间微小卫星动力电源的应用上具有广阔的市场前景。

砷化镓电池:简称GaAs,是一种高效率、高稳定性的太阳能电池。它采用砷化镓材料作为光伏层,具有较高的太阳能转换效率,并且在高温和高辐射环境下具有较好的稳定性。其原理是砷化镓太阳能电池的光伏转换层主要由砷化镓半导体材料构成。当太阳光照射到砷化镓层上时,光子能量激发了砷化镓中价带变成了导带的电子,从而产生了光生电子空穴对,这些电子空穴对被捕获并输送到电极,形成电流。

砷化镓太阳电池是一种高效、高速响应、光谱响应宽、适用于各种光照条件的太阳能转换器。尽管成本较高,但其应用前景广阔,将在未来的可再生能源发展中扮演重要的角色。

碲化镉电池:简称CdTe电池,以碲化镉薄膜为主要功能层的薄膜太阳能电池。主要由p型碲化镉、n型镉(硫化镉)薄膜、透明电极、背电极、玻璃基底等组成。其光吸收率高,转换效率高,性能稳定,生产成本远低于其他材料的太阳能电池,便于规模化生产,有望成为未来的主导新能源之一。

钙钛矿电池:钙钛矿型太阳能电池(perovskite solar cells),是利用钙钛矿型的有机金属卤化物半导体作为吸光材料的太阳能电池,属于第三代太阳能电池,也称作新概念太阳能电池。转换性能优异、成本低廉、商业价值巨大,是目前研究的热点。

四、光伏电池片的技术路径

五、光伏电池片的生产工艺

制绒( INTEX ) → 扩散 ( DIFF ) →后清洗 ( 刻边 / 去PSG ) → 镀减反射膜( PECVD ) → 丝网、烧结 ( PRINTER ) → 测试、分选( TESTER + SORTER ) → 包装 ( PACKING )

1、制绒:制绒的目的是在硅片表面形成绒面面,以减少电池片的反射率,绒面凹凸不平可以增加二次反射,改变光程及入射方式。 通常情况下用碱处理单晶,可以得到金字塔状绒面;用酸处理多晶,可以得到虫孔状无规则绒面。处理方式区别主要在与单多晶性质的区别。工艺流程:制绒槽→水洗→碱洗→水洗  →酸洗→水洗→吹干。一般情况下,硅与HF、HNO3(硅表面会被钝化)认为是不反应的。当存在于两种混合酸的体系中,硅与混合溶液的反应是持续性的。

2、扩散:扩散是为电池片制造心脏,是为电池片制造P-N结,POCl3是当前磷扩散用较多的选择。POCl3为液态磷源,液态磷源扩散具有生产效率较高、稳定性好、制得PN结均匀平整及扩散层表面良好等优点。

3、刻蚀:在扩散工序,采用背靠背的单面扩散方式,硅片的侧边和背面边缘不可避免地都会扩散上磷原子。当阳光照射,P-N结的正面收集到的光生电子会沿着边缘扩散有磷的区域流到P-N结的背面,造成短路通路。短路通道等效于降低并联电阻。刻蚀工序是让硅片边缘带有的磷的部分去除干净,避免了P-N结短路并且造成并联电阻降低。

4、镀减反射膜 (PECVD ):等离子体化学气相沉积。太阳光在硅表面的反射损失率高达35%左右。减反射膜可以提高电池片对太阳光的吸收,有助于提高光生电流,进而提高转换效率:另一方面,薄膜中的氢对电池表面的钝化降低了发射结的表面复合速率,减小暗电流,提升开路电压,提高光电转换效率。 H能与硅中的缺陷或杂质进行反应,从而将禁带中的能带转入价带或者导带。在真空环境下及480摄氏度的温度下,通过对石墨舟的导电,使硅片的表面镀上一层SixNy薄膜。

5、丝网印刷:通俗的说就是为太阳能电池收集电流并制造电极,第一道背面银电极,第二道背面背场的印刷和烘干;第三道正面银电极的印刷,主要监控印刷后的湿重和次栅线的宽度。第二道道湿重如果过大,既浪费浆料,同时还可能导致不能在进高温区之前充分干燥,甚至不能将其中的所有有机物赶出从而不能将整个铝浆层转变为金属铝,另外湿重过大可能造成烧结后电池片弓片。湿重过小,所有铝浆均会在后续的烧结过程中与硅形成熔融区域而被消耗,而该合金区域无论从横向电导率还是从可焊性方面均不适合于作为背面金属接触,另外还有可能出现鼓包等外观不良。第三道道栅线宽度过大,会使电池片受光面积较少,效率下降。印刷方法:物理印刷、烘干

6、烧结:烧结是把印刷到电池片表面的电极在高温下烧结,使电极和硅片本身形成欧姆接触,提高电池片的开路电压和填充因子,使电极的接触具有电阻特性以达到高转效率,烧结过程中也可利于PECVD工艺所引入-H向体内扩散,可以起到良好的体钝化作用。 烧结方式:高温快速烧结,加热方式:红外线加热烧结是集扩散、流动和物理化学反应综合作用的一个过程,正面Ag穿过SiNH扩散进硅但不可到达P-N面,背面Ag、Al扩散进硅,由于需要形成合金需要到一定的温度,Ag、Al与Si形成合金的稳定又不同,就需要设定不同的温度来分别实现合金化。